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Outline

Last time

Generative models: intensity-based (e.g. 2D images)  and scene-based (e.g. 3D graphics)

Focus on linear, intensity-based models. 
When we look at a point of light, like a star, what is the image on the retina? It is slightly blurred 

image called the “Point Spread Function” or PSF. 
(in other contexts, the “impulse response function”)

PSF of the human eye is determined by optical aberrations, defocus, and in the limit of small 
pupil size, by diffraction.

(Recall Paul Dirac’s famous statement about photons: “Each photon interferes only 
with itself. Interference between photons never occurs.” )

Point spread functions together with the principle of superposition, lead to the convolution model 
of image transformation by the optics. The idea is that to model the eye’s optical transformation of an 
input image, we treat each incoming pixel as a point, determine its PSF, and add all of these up to form 
the output image.

The previous lecture used ListConvolve[] which operates on lists to do this. Mathematica also 
provides a version that takes an Image type as argument. Once adjusted for scale, it gives the same 
result. Here’s a convolution model with a 18x18 square-shaped PSF:

ImageConvolve , Table
1

64
, {i, 1, 18}, {j, 1, 18} /∕/∕ ImageAdjust

Today

Linear systems analysis: Linear intensity-based image models + linear systems

Fourier synthesis/analysis, and the spatial frequency analysis of images
Vector/matrix modeling of optical image transformation
Linear systems
Eigenfunctions of linear shift-invariant systems
Spatial frequency analysis

Application: Modulation transfer functions and the human eye

Preview: Sinewaves are a special type of pattern. We'll try to understand why, and why they are useful.



Linear systems analysis
The world of input/output systems can be divided up into linear and non-linear systems. Linear systems 
are nice because the mathematics that describes them is not only well-known, but also has a mature 
elegance. On the other hand, it is a fair statement to say that most real-world systems are not linear, 
and thus hard to analyze...but fascinating if for that reason alone. That nature is usually non-linear 
doesn't mean one shouldn't familiarize oneself with the basics of linear system theory. Many times a 
non-linear system has a sufficiently smooth mapping that it can be approximated by a linear one over 
restricted ranges of parameter values. The assumption of linearity is an excellent starting point--but 
must be tested. The optics of the eye can be approximated as a linear system over small patches. The 
responses of some populations of neurons in the retina and primary visual cortex can also be approxi-
mated as linear systems.
So exactly what is a "linear system"?
The notion of a "linear system" is a generalization of the input/output properties of a straight line passing 
through zero. For any matrix W, the equation W.g == f represents a linear system. If W is  a matrix, g1 
and g2 are vectors, and a and b are scalars, it is easy to show that:
                     W.(a g1 + b g2) = a W.g1 + b W.g2
This is a consequence of the laws of matrix algebra.The idea of a linear system has been generalized 
beyond matrix algebra to include continuous functions, not just vectors.  Imagine we have a box that 
takes inputs  g, and outputs f = T[g].

The general definition of a linear system is that it satsifies:
                     T[a g1 + b g2] = a T[g1] + b T[g2]

where T is the transformation that takes the sum of scaled inputs g1, g2 (which can be functions or 
vectors) to the sum of the scaled transformation of g1 and g2. The property, that the output of a sum is 
the sum of the outputs, is called the superposition principle for linear systems--the assumption we 
needed to add up all the PSF contributions in the previous lecture. The property that a scaled version of 
the input results in an output scaled by the same amount (i.e. by a or by b) is called the homogeneity 
principle. The fact that linear systems show superposition is good for doing theory, but as we will see 
later, it limits the kind of input/output computations that can be done with linear systems, and thus with 
linear neural network models.
When encountering a new system, it is a good idea to test for superposition. This was done, for exam-
ple, in the early days of functional magnetic resonance imaging responses to visual input (Boynton et 
al., 1996).
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Shift-invariance means that if:

g(x,y) -> f(x,y)

then if you shift the input image over by (a,b) and run it through the transformation, you get the same 
result as just shifting over the original output image by the same amount:

g(x-a, y-b)→f(x-a, y-b)
Shift-invariance is a good assumption over small optical regions. But once the image gets transduced, it 
breaks down for visual neural processing due to the large differences between foveal and extra-foveal 
vision. (Note we are ignoring magnifaction/minification factors.)

Vector/matrix modeling of image transformations: Linear intensity-based

Suppose that T[ ] is a linear system, with g1 and g2 input images (on a high-resolution computer screen 
that you are viewing), and f1, f2 output images (e.g. on your retina). By definition, if

g1 -> f1
and

g2 -> f2,
then a linear combination of the inputs maps to a linear combination of the outputs

a*g1+ b*g2 -> a*f1 + b*f2
where a and b are scalar weights. We now want to understand how to characterize the transformation in 
terms of the properties of a matrix T. 
But first let's see the ways in which one can represent the input vector as combinations of other vectors. 
We'll assume a linear intensity-based generative model of images.
(Note that if we add lots of images, the intensities would tend to  get bigger and bigger. Thus it can be 
convenient to subtracted out the mean levels of images, then images are represented by contrast. We 
don’t have to worry about that yet. More later.)

Vector/matrix modeling of optical image transformation: Simple 1D case

Output image "response" to a single point of light (pixel)
For the time being, let's imagine our images are one-dimensional, and represented as vectors whose 
positions indicate pixel location, and whose values are intensities. Suppose that an arbitrary input image 
is given by g ={g1,g2,...}. We’d like to get a deeper understanding of how to model its transformation to 
an output image.
Let an input test image (e.g. on a computer screen) be represented by ui = {0,0,0,...,1,...} where all 
pixels are black (zero) except for the ith one which is bright (1) .  If the 4th pixel is bright, for example, 
the test image is represented by a vector u4 = {0,0,0,1,0,0,...}:

u4=

0
0
0
1
0
0
0
0
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u4=

0
0
0
1
0
0
0
0

We'll use bold for vectors and matrices, and plain for scalars. Let t4 = {t6, t7, t8,t1, ...} represent the 
output image (e.g. retinal image), i.e. point spread function (PSF), that results from u4

t4=

t6
t7
t8
t1
t2
t3
t4
t5

For example, if there is a little local blurring, t4 might look like this:

t4=

0
0

1 /∕4
1 /∕2
1 /∕4
0
0
0

u4 = {0, 0, 0, 1, 0, 0, 0, 0};
t4 = {0, 0, 1 /∕ 4, 1 /∕ 2, 1 /∕ 4, 0, 0, 0};
GraphicsRow[{ArrayPlot[{u4}, ColorFunction → "GrayTones"],

ArrayPlot[{t4}, ColorFunction → "GrayTones"]}]

Output image "response" to a spatially shifted point of light
What if we now shift the input pattern over a position, so the bright pixel is at the (i+1)th position? E.g.

u5=

0
0
0
0
1
0
0
0

For a system like the eye, we might expect that the output image would be basically the same form, 
except that it also gets shifted over:
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For a system like the eye, we might expect that the output image would be basically the same form, 
except that it also gets shifted over:

t5=

X
t6
t7
t8
t1
t2
t3
t4

 

We've stuck an "X" at the slot left open after the shift. There are various ways of modeling the bound-
aries. One way which is convenient mathematically is to use a circular boundary. This works well for 
large images, and where the PSF is local and falls off to zero away from the ith position. Then we wrap 
the entries around, so in the above case X -> t5. 

t5=

0
0
0

1 /∕4
1 /∕2
1 /∕4
0
0

In other words, the image of a point shifted over (t5) has basically the same form as t4--it is just offset 
by the shift.

Output image "response" to an arbitrary image g
Let's see how g gets transformed to an output image f, through a transformation matrix T. 
We'll generalize things a bit. Let u1, u2, u3, .... be the shifted test images where the bright pixel is at 
location 1, 2, ...:

u1 = 

1
0
0
0
0
0
0
0

, u2 =  

0
1
0
0
0
0
0
0

, ...

This is the familiar Cartesian basis set for vectors.

Using our linear intensity-based model of image patterns, we can express the (arbitrary) input image g 
as a weighted linear sum of the test images:

g = 

g1
g2
g3
g4
g5
g6
g7
g8

 = g1

1
0
0
0
0
0
0
0

+ g2 

0
1
0
0
0
0
0
0

 + ... = g1 u1 + g2 u2 + ...

The weights are just the intensities of the pixels. 
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g = 

g1
g2
g3
g4
g5
g6
g7
g8

 = g1

1
0
0
0
0
0
0
0

+ g2 

0
1
0
0
0
0
0
0

 + ... = g1 u1 + g2 u2 + ...

The weights are just the intensities of the pixels. 

Assuming that the transformation T[ ] is linear, then the following holds:
f = T[g] = T[g1u1 + g2u2 + ...] = g1T[u1] + g2T[u2] + ... = g1t1 + g2t2 + ...

Each T[ui], i = 1, 2,... is the blurry image of the input test image, ui. 
The transformation T can be represented by a matrix that multiplies g.  Assuming shift-invariance, we 
can line up all the ti vectors in columns to represent the output as matrix T times input g:

f =

t1 t8 t7 t6 t5 t4 t3 t2
t2 t1 t8 t7 t6 t5 t4 t3
t3 t2 t1 t8 t7 t6 t5 t4
t4 t3 t2 t1 t8 t7 t6 t5
t5 t4 t3 t2 t1 t8 t7 t6
t6 t5 t4 t3 t2 t1 t8 t7
t7 t6 t5 t4 t3 t2 t1 t8
t8 t7 t6 t5 t4 t3 t2 t1

g1
g2
g3
g4
g5
g6
g7
g8

= T.g

◼ Prove that equation (2) is the same as (10)

For mathematical convenience, we are using "circulant" boundaries, i.e. that wrap around. We noted 
this above. The practical justification is that images are usually big, and if the blur small relative to the 
size of the image, then the boundaries don't contribute much to the center of the image. 
A matrix for which the values along diagonals are the same is called a Toeplitz matrix.  A circulant 
matrix is a special case of a Toeplitz matrix in which each subsequent row is a copy of the previous row 
but shifted one element to the right. 

Shift-invariance and symmetric transformations, T
Let's take our model one step further. In addition to shift-invariance, we might also expect an optical 
system like the eye to show symmetry to a first approximation. I.e. the PSF is radially symmetric, or in 1-
D our transformation matrix becomes:
t1 t2 t3 t4 t5 t6 t7 t8
t2 t1 t2 t3 t4 t5 t6 t7
t3 t2 t1 t2 t3 t4 t5 t6
t4 t3 t2 t1 t2 t3 t4 t5
t5 t4 t3 t2 t1 t2 t3 t4
t6 t5 t4 t3 t2 t1 t2 t3
t7 t6 t5 t4 t3 t2 t1 t2
t8 t7 t6 t5 t4 t3 t2 t1

One of the benefits of the symmetric shift-invariant properties of the eye's optics is that we can model 
the transformation as a symmetric toeplitz matrix. As we will see later, these properties suggest an 
alternative basis set to represent images. Rather than represent an image as a linear combination of 
points (i.e. the above u's), images will be represented as a linear combination  of spatial sinewave 
gratings. We'll see how the symmetric shift-invariant case provides a particularly simple example of 
Fourier analysis/synthesis. 
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So in standard Mathematica format, the above matrix calculation is written as:

Clear[t4]

{{t1, t8, t7, t6, t5, t4, t3, t2},
{t2, t1, t8, t7, t6, t5, t4, t3}, {t3, t2, t1, t8, t7, t6, t5, t4},
{t4, t3, t2, t1, t8, t7, t6, t5}, {t5, t4, t3, t2, t1, t8, t7, t6},
{t6, t5, t4, t3, t2, t1, t8, t7}, {t7, t6, t5, t4, t3, t2, t1, t8},
{t8, t7, t6, t5, t4, t3, t2, t1}}.{g1, g2, g3, g4, g5, g6, g7, g8}

{g1 t1 + g8 t2 + g7 t3 + g6 t4 + g5 t5 + g4 t6 + g3 t7 + g2 t8,
g2 t1 + g1 t2 + g8 t3 + g7 t4 + g6 t5 + g5 t6 + g4 t7 + g3 t8,
g3 t1 + g2 t2 + g1 t3 + g8 t4 + g7 t5 + g6 t6 + g5 t7 + g4 t8,
g4 t1 + g3 t2 + g2 t3 + g1 t4 + g8 t5 + g7 t6 + g6 t7 + g5 t8,
g5 t1 + g4 t2 + g3 t3 + g2 t4 + g1 t5 + g8 t6 + g7 t7 + g6 t8,
g6 t1 + g5 t2 + g4 t3 + g3 t4 + g2 t5 + g1 t6 + g8 t7 + g7 t8,
g7 t1 + g6 t2 + g5 t3 + g4 t4 + g3 t5 + g2 t6 + g1 t7 + g8 t8,
g8 t1 + g7 t2 + g6 t3 + g5 t4 + g4 t5 + g3 t6 + g2 t7 + g1 t8}

Our transformation matrix T is completely characterized by just one vector (which just gets repeated 
and shifted). In fact this filtering operation can be done using a convolution operator.  ListConvolve[ ] 
gives us the same answer:

ListConvolve[{t1, t2, t3, t4, t5, t6, t7, t8}, {g1, g2, g3, g4, g5, g6, g7, g8}, 1]

{g1 t1 + g8 t2 + g7 t3 + g6 t4 + g5 t5 + g4 t6 + g3 t7 + g2 t8,
g2 t1 + g1 t2 + g8 t3 + g7 t4 + g6 t5 + g5 t6 + g4 t7 + g3 t8,
g3 t1 + g2 t2 + g1 t3 + g8 t4 + g7 t5 + g6 t6 + g5 t7 + g4 t8,
g4 t1 + g3 t2 + g2 t3 + g1 t4 + g8 t5 + g7 t6 + g6 t7 + g5 t8,
g5 t1 + g4 t2 + g3 t3 + g2 t4 + g1 t5 + g8 t6 + g7 t7 + g6 t8,
g6 t1 + g5 t2 + g4 t3 + g3 t4 + g2 t5 + g1 t6 + g8 t7 + g7 t8,
g7 t1 + g6 t2 + g5 t3 + g4 t4 + g3 t5 + g2 t6 + g1 t7 + g8 t8,
g8 t1 + g7 t2 + g6 t3 + g5 t4 + g4 t5 + g3 t6 + g2 t7 + g1 t8}

When we do  a convolution (a correlation, as in ListCorrelate[kern,list, offset]), we can specify that 
Mathematica use a circular boundary, and place kern in the first row, but aligned relative to list by offset .

Characterizing a linear system by its response to an orthonormal basis set

Orthonormal basis sets
Given an image, we can think of it as being composed of a weighted sum of basic or "basis" images 
that together make up a "basis set" (e.g. the u's above). Each basis image is a vector of the same 
dimensionality as the image, but is presumed fixed. What is a "good" basis set? We have lots (∞ !) to 
choose from, and what is best will depend on what we are doing.
The simplest basis set (the Cartesian set used above) corresponds to our standard pixel representation 
for images, where the ith pixel is represented by a vector that is all zero's except for the ith element 
which is 1. 
Suppose we have a different basis set (e.g. a "Walsh" set defined below).  Let's call the ith basis image 
w[i]. Any 8-pixel image g can be written:
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g = g[1]

.3535

.3535

.3535

.3535

.3535

.3535

.3535

.3535

+ g[2]

+.3535
-−.3535
-−.3535
+.3535
+.3535
-−.3535
-−.3535
+.3535

+ ... = g[1] w[1] + g[2] w[2] + ...

If the set  {wi} = {w[i]} is orthogonal , then w[i] . w[j] = 0 for i≠j. Note that w[i] is the ith vector in the set--
not a scalar.
If it is normal , then w[i] . w[i]=1. (The vector length of each basis vector is 1).
If the set is complete , then it spans 8-space in such a way that we can express any 8-d vector as a 
linear sum of these basis vectors. 
Orthonormal (orthogonal and normalized) basis sets make it easier to do calculations. 
Are there other orthonormal sets than the Carteisian or Walsh set? Again, there are lots, and again 
which one we use will depend on the job at hand. 
Let {wi}= {w[i]} be any orthonormal set. Then an arbitrary vector, g can be represented as a weighted 
sum of the orthonormal vectors, each weighted by the amount g projects onto  wi i.e, (g.wi). 
The vector {g.w1, g.w2, g.w3 ...} is sometimes called the spectrum of g. We have: 

g =(g.wi) wi
In our first example (the above u's), the dot product is really simple and g.wi= g[[i]], i.e. the ith element 
of vector g. 

Application to an "unknown" system
How can one go about measuring the matrix to characterize a linear system such as the optics of the 
eye? Or a neural system?
We won't presume symmetry or shift-invariance.
Suppose we have an unknown physical system, which we model as a linear system with matrix T:

T = Table[RandomReal[], {i, 1, 8}, {j, 1, 8}];

Goal: We would like to make a simple set of measurements that could characterize T in such a 
way that we could predict the output of T to any input. 
This is the sort of task that engineers face when wanting to characterize, say a stereo amplifier (as a 
model linear system), so that the output sound can be predicted for any input sound.What kind of 
measurements would tell us what T is? As we did above, we could just "stimulate" the system with 
cartesian vectors {1,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0}, and so forth and collect the responses which would 
be the columns of T. This has two practical problems: 1) for a real physical system, such as your stereo, 
or a neuron in the eye, to get a measureable response might require stimulating it with a high-intensity 
audio or light intensity spike, which could damage what you are trying to study; 2) Characterizing the 
linear system by a matrix T, requires n2numbers, where n is the input signal vector length--and n can be 
pretty big for both audio and visual systems. Problem 2) can be solved when T is symmetric and/or shift-
invariant (because of the redunduncy,  O(n) numbers are sufficient). Problem 1) can be addressed by 
showing that we can characterize T with any basis set--so we can pick one that won't blow out the 
physical system being tested.
As an example, consider the orthonormal set (v's below) of Walsh functions. It has the advantage that 
the elements that contribute to the "energy", i.e. (the square of the length) are distributed across the 
vector.
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physical system being tested.
As an example, consider the orthonormal set (v's below) of Walsh functions. It has the advantage that 
the elements that contribute to the "energy", i.e. (the square of the length) are distributed across the 
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Vectorlength[x_] := N[Sqrt[x.x]]

v1 = {1, 1, 1, 1, 1, 1, 1, 1}; w1 = v1/∕Vectorlength[v1];
v2 = {1,-−1,-−1, 1, 1,-−1,-−1, 1}; w2 = v2/∕Vectorlength[v2];
v3 = {1, 1,-−1,-−1,-−1,-−1, 1, 1}; w3 = v3/∕Vectorlength[v3];
v4 = {1,-−1, 1,-−1,-−1, 1,-−1, 1}; w4 = v4/∕Vectorlength[v4];
v5 = {1, 1, 1, 1,-−1,-−1,-−1,-−1}; w5 = v5/∕Vectorlength[v5];
v6 = {1,-−1,-−1, 1,-−1, 1, 1,-−1}; w6 = v6/∕Vectorlength[v6];
v7 = {1, 1,-−1,-−1, 1, 1,-−1,-−1}; w7 = v7/∕Vectorlength[v7];
v8 = {1,-−1, 1,-−1, 1,-−1, 1,-−1}; w8 = v8/∕Vectorlength[v8];

Consider an arbitrary 1-D image g:

g = {2,6,1,7,11,4,13, 29};

g can be written as the sum of its own projections onto the basis set:

(g.w1) w1  + (g.w2) w2  +(g.w3) w3  +(g.w4) w4  +
(g.w5) w5  + (g.w6) w6  +(g.w7) w7  +(g.w8) w8

{2., 6., 1., 7., 11., 4., 13., 29.}

Suppose we now do an "experiment" to find out how T transforms the vectors of our basis set, and we 
put all of these transformed basis elements into a new set of vectors newW[[i]]. newW is a matrix for 
which each column is the response of T to a basis vector.

newW = Transpose[{T.w1,T.w2,T.w3,T.w4,T.w5,T.w6,T.w7,T.w8}];

Note that newW is an 8x8 matrix. So how can we calculate the output of T, given input g without actu-
ally running the input through T? 

By the principle of linearity, we can also calculate the output by finding the "spectrum" of g, and then 
scaling each of the transformed basis elements by the spectrum and adding them up:

T.g = T.(g.wi) wi =(g.wi) T.wi
(g.w1) T.w1 + (g.w2) T.w2 + (g.w3) T.w3 + (g.w4) T.w4 + 
(g.w5) T.w5 + (g.w6) T.w6 + (g.w7) T.w7 + (g.w8) T.w8

{34.2402, 50.9029, 14.0481, 37.893, 45.0004, 43.6688, 32.8009, 38.1511}

..but we don't have to run the basis vectors through T each time
Of course, we have already done our "experiment in the lab", so we know what the transformed basis 
vectors {T.w1, ...} are, we stored them as columns of the matrix newW.  Each of these columns is given 
by: Transpose[newW][[i]]. (Recall that the transpose of a matrix turns the rows into columns.)
So all we need to do is calculate what the spectrum (g.wi) is, and then combine this using equation (4), 
to produce the output of T. I.e. T.g is: 

(g.w1) Transpose[newW][[1]] + (g.w2) Transpose[newW][[2]] + (g.w3) Transpose[newW][[3]] + 
(g.w4) Transpose[newW][[4]] + (g.w5) Transpose[newW][[5]] + (g.w6) Transpose[newW][[6]] + 
(g.w7) Transpose[newW][[7]] + (g.w8) Transpose[newW][[8]]

{34.2402, 50.9029, 14.0481, 37.893, 45.0004, 43.6688, 32.8009, 38.1511}

The point is that once we've measured the output to the complete set of basis images, we just store 
those image (just 8 of them in this simple example). 
Then we can get the output to any arbitrary input image by computing the spectrum of the input and 
using those values as weights for the stored images. 
The PSF was a special case of the "stored image", but was simpler because of shift-invariance. Here 
we are not assuming shift-invariance.
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The point is that once we've measured the output to the complete set of basis images, we just store 
those image (just 8 of them in this simple example). 
Then we can get the output to any arbitrary input image by computing the spectrum of the input and 
using those values as weights for the stored images. 
The PSF was a special case of the "stored image", but was simpler because of shift-invariance. Here 
we are not assuming shift-invariance.

Check our answer: If we "go back to the lab" and run the input g through T we get:

T.g

{34.2402, 50.9029, 14.0481, 37.893, 45.0004, 43.6688, 32.8009, 38.1511}

Same thing in more concise notation
Let  the basis vectors be the rows of a matrix W:

W = {w1, w2, w3, w4, w5, w6, w7, w8};

So again, we can project g onto the rows of W, and then reconstitute it in terms of W to get g back 
again:

(W.g).W

{2., 6., 1., 7., 11., 4., 13., 29.}

newW.W.g

{34.2402, 50.9029, 14.0481, 37.893, 45.0004, 43.6688, 32.8009, 38.1511}

What if the choice of basis set is the set of eigenvectors of T?

We are now going to introduce an elegant idea that will simplify our analysis of linear shift-invariant 
systems. Our illustration relies on a result from linear algebra that says the eigenvectors of a symmetric 
matrix are real and orthogonal. In general, one can relax the assumption of symmetry.

Eigenvectors and eigenvalues--short review
It is worth taking a little time to learn (or review) the idea of an eigenvector. It crops up in statistical data 
analysis (PCA), and in the statistics of natural images, which we will study later.

Eigenvectors

An eigenvector, x,  of a matrix, A,  is vector that when you multiply it by A, you get an output vector that 
points in the same direction as x:
Ax = λx
where λ is a scalar that adjusts the length change of x.

The Mathematica function Eigenvectors[A] returns the eigenvectors of matrix A as the rows of a 
matrix, which we'll call eig:

A = {{1,2},{3,4}};
eig = Eigenvectors[A]


1

6
-−3 + 33 , 1, 

1

6
-−3 -− 33 , 1

We can verify that eig[[1]] and A.eig[[1]] lie along the same direction by taking the dot product of the 
unit vectors pointing in the directions of each:
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normalize[x_] := x/∕Sqrt[x.x];
normalize[eig[[1]]].normalize[A.eig[[1]]];
N[%]

1.

Eigenvalues

The eigenvalues are given by:

Eigenvalues[A]


1

2
5 + 33 ,

1

2
5 -− 33 

Eigenvalues and eigenvector elements do not have to be real numbers. They can be complex, that is an 
element can be the sum of a real and imaginary number. In Mathematica, imaginary numbers are 
represented by multiples (or fractions) of I, the square root of -1:

Sqrt[-−1]
Sqrt[-−1]/∕/∕StandardForm

ⅈ

ⅈ

B = {{1,2},{-−3,4}};
Eigenvalues[B]


1

2
5 + ⅈ 15 ,

1

2
5 -− ⅈ 15 

We've seen how linearity provides us with a method for characterizing a linear system in terms of the 
responses of the system to the basis vectors. The problem is that if the input signals are long vectors, 
say with dimension 40,000, then this set of basis vector responses is really big--1.6x109 numbers.

Apply a symmetric matrix transformation, T, to eigenvectors {wi}. Then,
T.wi=λi wi

The eigenvectors of a symmetric matrix are orthogonal and real-valued (very handy). Now we use those 
same eigenvectors of T to represent the input g. If the elements of the basis set are the eigenvectors of 
T, then the transformation of any arbitrary input vector g is given by:

T.g = T.(g.wi) wi =(g.wi) T.wi =αi λi wi
Where the α𝛼iare the projections of g onto each eigenvector. 
Having the eigenvectors of T enables us to express the input and output of T in terms of the same basis 
set--the eigenvectors. 
All T does to the input is to scale its projection onto each eigenvector by the eigenvalue for that eigenvec-
tor. The set of these eigenvalues, {λ𝜆i}  is sometimes called the modulation transfer function because it 
describes how the amplitude of the eigenvectors change as they pass through T.
Linear systems analysis is the foundation of Fourier analysis, and is why it makes sense to characterize 
your stereo amplifier in terms of frequency response. But your stereo isn't just any linear system--it has 
the special property that if you input a sound at time t and measure the response, and then you input 
the same sound again at a later time, you get the same response, except of course that is is shifted in 
time. It is  a shift-invariant system. The eigenvectors of a shift-invariant system are sinusoids. (The 
eigenvectors of the symmetric matrix are sinusoids, not just because the matrix was symmetric, but also 
because each row of the matrix was a shifted version of the previous row--the elements along any given 
diagonal are identical-- a symmetric Toeplitz matrix.)
Sinewave inputs are the eigenvectors of your stereo system. The dimensionality is much higher--if you 
are interested in frequencies up to 20,000 Hz, your eigenvector for this highest frequency would have 
least 40,000 elements--not just 8!
This kind of analysis has been applied not only to physical systems, but to a wide range of neural 
sensory systems. For the visual system alone, linear systems analysis has been used to study the cat 
retina (Enroth-Cugell and Robson, 1964), the monkey visual cortex, and the human contrast sensivity 
system as a whole (Campbell and Robson, 1968).
Much empirical analysis has been done using linear systems theory to characterize neural sensory 
systems, and other neural systems such as those for eye movements. It works wonderfully as long as 
the linear system approximation holds. And it does do quite well for the lateral eye of the limulus, X-cells 
and P-cells of the mammalian visual system, over restricted ranges for so-called "simple" cells in the 
visual cortex, among others. The optics of the simple eye is another example of an approximately linear 
system. Many non-linear systems can be approximated as linear systems over smooth subdomains.
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sensory systems. For the visual system alone, linear systems analysis has been used to study the cat 
retina (Enroth-Cugell and Robson, 1964), the monkey visual cortex, and the human contrast sensivity 
system as a whole (Campbell and Robson, 1968).
Much empirical analysis has been done using linear systems theory to characterize neural sensory 
systems, and other neural systems such as those for eye movements. It works wonderfully as long as 
the linear system approximation holds. And it does do quite well for the lateral eye of the limulus, X-cells 
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Summary of frequency analysis
In summary, if T has n distinct orthogonal eigenvectors, e i, and known eigenvalues, λ𝜆i,  then we have a 
particularly easy way to calculate the response to an input g:
Step 1: Project g onto eigenvectors of T (w i=e i) using the dot product: g.e i
Step 2: Scale each g.e i by the eigenvalue of e i: λ𝜆ig.e i
Step 3: Scale each e i by the scalar λ𝜆ig.e i
Step 4: Sum these up. That's the response of T to g : f = ∑i (λ𝜆i g.e i) e i

The Modulation Transfer Function (MTF) of the human eye

Gratings: Eigenfunctions of linear shift-invariant optics

Now a point of light, a face, a square wave grating do not maintain the same form through optical 
transformation, because aberrations and diffraction blur the edges. However, for a spatially homoge-
neous optical system, a sine-wave grating does keep the same form (consistent with the shift-invariant 
properties of a linear system). The figure below shows pictures of a square-wave and a sine-wave (you 
need 256 gray-levels to see the sine-wave grating). What happens to the form of the two intensity 
patterns when you blur your eyes?

Blurring: Sine vs. square

Grating[x_, y_, fx_, fy_] := Cos2 Pi fx x + fy y;
Square[x_, y_, fx_, fy_] := Sign[Grating[x, y, fx, fy]];

gsine = DensityPlot[0.25 *⋆ Grating[x, y, 4, 0], {x, -−1, 1}, {y, -−1, 1}, PlotPoints → 64,
Mesh → False, Frame → False, PlotRange → {-−1, 1}, ColorFunction → "GrayTones"];

gsquare =
DensityPlot[0.25 *⋆ Square[x, y, 4, 0], {x, -−1, 1}, {y, -−1, 1}, PlotPoints → 64,
Mesh → False, Frame → False, PlotRange → {-−1, 1}, ColorFunction → "GrayTones"];
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Show[GraphicsRow[{gsine, gsquare}]]

Sine-wave gratings are eigenfunctions of linear shift-invariant systems. Our complete basis set 
(a collection of eigenfunctions, {bi}) will have to be built out of collection of gratings of various frequen-
cies (combinations of fx and fy produce different orientations) and phases (ϕ𝜑). So if we can represent 
our images in terms of sums of sine-wave gratings, then we can model how a linear shift-invariant 
optical system distorts the image. This kind of representation of an image is called Fourier Analysis. 
Because we are talking about intensity as a function of space (we'll get to time later), this kind of Fourier 
analysis is called spatial frequency analysis of images.

Fourier analysis

Representing images: The formal case, continous variable case -> Fourier transform
A complete formal analysis for continuous images is the analog to the discrete model we introduced 
above, where frequencies can take on continuous values.  The basic formalism is similar, with summa-
tion replaced by integration, and complex variables are used (to compactly and efficiently deal with 
phase relationships between the gratings). In one spatial dimension, the forms are given by:

Fourier transform : F (fx) =
1

2 π

-−∞

∞
image (x) ei2πfx x ⅆx ,

Inverse fourier transform : image (x) =
1

2 π

-−∞

∞
F (fx) e-−i2πfx x ⅆfx

Mathematica has built-in functions FourierTransform[] and InverseFourierTransform[] to deal with 
symbolic manipulations for the continuous case. Fourier[] handles the discrete numerical calculations. 
One theoretical advantage of Fourier transforms is that, in contrast to Fourier series, one is not limited 
to periodic images.

Actual practice: hybrid discrete-continuous
But in actual practice, we might use some discrete collection of continuous gratings (Fourier series) to 
approximate the image as:

image = ∑i ai bi + b0
aibi= aiCos[2 Pi (fxi x+ fyi y) + ϕ𝜑i]

b0 is the average background light level, and ai  = ai
in is the amplitude of the grating. Often,

we talk only about the contras t of the grating :

contrast = ai

b0
. 

The reason is psychophysical and physiological--the human visual system is largely invariant to aver-
age background level--contrast corresponds well to the relative variations in brightness that you see in 
an image pattern, as well as to the neural variations transmitted from the retina to the brain. So for 
convenience, we can drop the b0term which is constant, and if there is negligible absorption by the 
optics, remains unchanged anyway. The set {ai} is the amplitude spectrum of the image, and {ϕ𝜑i} the 
phase spectrum. Both are usually plotted as a function of frequency (here indexed by i).
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optics, remains unchanged anyway. The set {ai} is the amplitude spectrum of the image, and {ϕ𝜑i} the 
phase spectrum. Both are usually plotted as a function of frequency (here indexed by i).

The Modulation Transfer Function (MTF)

Characterizing on optical system
In order to characterize an optical system, the idea is to measure how the amplitude (contrast) of the 
eigenfunctions (sine wave gratings) changes as a function of spatial frequency. The ratio of output 
grating amplitude to input amplitude (as a function of spatial frequency) is called the modulation transfer 
function of the optical system (e.g. eye):

Of course, the spatial scale will change with optical minification or magnification. We will assume the 
scale is the same. We can always put the right scale back in with a suitable mapping x-> scale factor * x.
Suppose the input contrast amplitude is fixed, say ai

in = 1. Then  ai
outis the MTF. In one dimension, we'll 

write a(f) = ai
out.

Can you guess what a typical modulation transfer function would do the the following gratings, going 
from low to high spatial frequencies?

g = Table[DensityPlot[0.5` Grating[x, y, fx, 0],
{x, -−1, 1}, {y, -−1, 1}, PlotPoints → 128, Mesh → False, Frame → False,
PlotRange → {-−1, 1}, ColorFunction → "GrayTones"], {fx, 1, 7, 2}];

Show[GraphicsRow[{g〚1〛, g〚2〛, g〚3〛, g〚4〛}]]
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Some answers
Here are two possible MTFs:

The form of these curves makes intuitive sense. The amplitudes of low spatial frequency gratings 
remains largely unchanged going through the optics. On the other hand, at high spatial frequencies, the 
light and dark bars are close together and get smeared out by aberrations. You might think that the 
negative part of the MTF is a little unlikely. In fact, it is quite common.  An example is when your eye is 
out of focus. The contrast at those spatial frequencies corresponding to negative MTF undergo phase 
reversal. This is called spurious resolution. You can't really notice this with ordinary images, but can see 
it with sinewave grating images. 

Visualizing your own contrast sensitivity function (CSF)
Warning--executing the next cell can take some time.

CSF[x_, y_] := 127.5 ⅇ-−
y

0.125 Cos2 π ⅇ
x
4 x + 127.5; csfg =

DensityPlot[CSF[x, y], {x, 0, 6}, {y, 0, 1}, PlotPoints → 512, PlotRange → {1, 254},
Mesh → False, Axes → False, Frame → False, ColorFunction → "GrayTones"]

The nominal physical contrast is constant across any horizontal straight line; however, the subjective 
appearance of the boundary between the easily visible and nearly invisible contrast transition appears 
like an upside-down U-shaped function, ⋂.

There is an apparent fall-off in contrast sensivity for high frequencies; however, there is also a drop-off 
at low frequencies. We'll focus on the high spatial frequency fall-off and return to the reasons for the low 
frequency loss later.

To re-cap
So the sine waves are the known basis functions, the MTF {ti’s} is measured, and the spectrum (Li’s) 
can be calculated from an image using a fourier transform subroutine. Then our discrete-hybrid analog 
of what we introduced at the very beginning of this lecture says that knowing the human eye's MTF, we 
can calculate the input image g, 

g = 
i

(g.bi) bi = aiin bi

retinal image f, as:

f = ∑i ai
inλ𝜆ibi

where

8.LinearSystemsOptics.nb     15



λi =
aiout

aiin
, is the MTF.

For the advanced...
For the continuous case, the image at the retina could be represented as an integral of the spectrum, 
the modulation transfer function, and the basis functions (or eigenfunctions):

r(x,y)=∫g(fx, fy) T(fx, fy) b(x, y; fx, fy) ⅆ fxⅆ fy

where L(fx, fy) is the (complex-valued) spectrum, T(fx, fy) the optical transfer function (takes into 
account phase shifts, that the MTF doesn't), and  {b(x, y; fx, fy)} are the complex-valued eigenfunctions, 
{e-−2π𝜋i(xfx+yfy)}.

The clever experiment of Campbell and Green

The idea--bypass the optics to measure the "eye-brain" response
How can we measure the MTF of a real eye?  The first measurements were made in the late 1950's and 
1960's using several techniques. One of the cleverest was developed by Campbell and Green in 1966.

Let us break the way contrast of a grating gets processed into two part

Our goal is to measure the MTF, but to do this would require getting access to ar(f). This seems like a 
tough problem. Campbell and Green came up with the following solution. Rather than measuring the 
MTF directly, they measured two other functions. One is called the contrast sensitivity function (CSF) of 
the human eye. This is measured by having subjects adjust the contrast of a grating until it is just 
disappearing, that is where the brain's "response" is always k.  One then plots up the reciprocal of 
contrast (called sensitivity) as a function of spatial frequency. Such a graph is shown below. Using our 
terminology

The second function they measured, we will call the "brain's contrast sensitivity function", or BTF for 
short. The idea was to present a grating on the retina whose contrast was unaffected by the optics of 
the eye, and then measure the contrast sensitivity in the same way as for the CSF
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If we know the CSF and the BTF, we can get the MTF. But how can the BTF be measured? The solu-
tion was to image two points of coherent laser light in the pupil of the eye. These two point sources in 
the pupil produce a sinusoidal interference pattern on the retina of the eye. In fact, the pupil corre-
sponds to the fourier plane of the retina--the fourier transform of a pair  of delta functions is a sinusoid, 
because of constructive and destructive interference (see Appendix and the cosine/dirac delta transform 
pairs). Further, the shift theorem says that if the points are moved apart in the pupil, the frequency of 
the grating gets higher, because the retinal pattern shrinks as the pupil fourier pattern expands. Camp-
bell and Green were able to have subjects modulate the contrast of the interference pattern to find the 
BTF, or contrast sensitivity as a function of spatial frequency with the optics effectively bypassed

The measured CSF and MTF of the human eye

The solid line shows the BTF--we require less contrast to see a grating if the optics are bypassed. The 
line with the data points shows the CSF. The MTF is the CSF/BTF and is shown in the upper panel

In this figure, the estimated MTFs are plotted for various pupil sizes (2, 2.8,3.8, and 5.8 mm). The 
curves are normalized so that the diffraction limit would correspond to a frequency of 1.  The solid line is 
the diffraction limit. You can see that for high frequencies, the eye with a 2mm pupil is essentially 
diffraction limited. However, aberrations (e.g. spherical) greatly affect contrast for big pupils.
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In this figure, the estimated MTFs are plotted for various pupil sizes (2, 2.8,3.8, and 5.8 mm). The 
curves are normalized so that the diffraction limit would correspond to a frequency of 1.  The solid line is 
the diffraction limit. You can see that for high frequencies, the eye with a 2mm pupil is essentially 
diffraction limited. However, aberrations (e.g. spherical) greatly affect contrast for big pupils.

The theoretical diffraction limit and receptor spacing

Diffraction limit
What is the theoretical diffraction limit?  The MTF can be calculated by computing the fourier transform 
of the Airy disk function. For round and square pupils, the curves look roughly like

(Note: these are hand sketched, and are meant mainly to show the steady monotonic drop in contrast 
transfer).
The high frequency cut-off is:

One of the advantages of spatial frequency analysis of the optics is that it gives us a precise description 
of the information that is lost--i.e. spatial frequencies higher than the cut-off frequency. (There have 
been efforts to recover this missing high frequency information in optics using analytic continuation, but 
here one is again thwarted by noise). The period Pc = .016 deg = 1/63. Now recall that the cone spac-
ing = .008 deg. How well does receptor sampling period, Ps,  match the period of the highest frequency 
in a broad band image spectrum?

The Nyquist limit

This is actually a perfect match (perhaps too perfect?). The Whittaker-Shannon theorem says that one 
can perfectly reconstruct a continuous band-limited function if the discrete sampling rate, fs, is at least 
twice that of the highest frequency in the spectrum
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The smallest sampling frequency that one can get by with is twice the highest frequency in the spectrum 
of the signal. This smallest frequency is called the Nyquist rat

If the sampling frequency is less, then aliasing results. Aliasing produces moiré patterns. (See Williams, 
1986; Coletta et al., 1990 for examples of the effects of aliasing in human vision). Is aliasing bad for 
neural processing of images? Allan Snyder once took me down in the basement of the Physiological 
Laboratories at the University of Cambridge to show me a Garter snake in a terrarium. With a simple 
ophthalmoscope, we peered into the tiny eye of the snake. We saw the photoreceptor mosaic in striking 
detail and regularity--the optics were clearly better than the sampling frequency.

We now have the tools to calculate an upper bound on the information capacity of the eye. The modula-
tion transfer function effectively limits the size of a resolution cell, as specified by diffraction and the 
Whittaker-Shannon sampling theorem, and photon statistics limit the number of distinguishable levels. 
There are formulas that combine these two factors to give precise measures of the limits to optical 
capacity in terms of bits.

Why aren't the optics better?
Making the pupil bigger leads to problems with aberrations (spherical).

Making the pupil smaller leads to increasing diffraction blur.
If the pupil was bigger, and aberration could be reduced, we would have to pack the cones more 

tightly to adequately sample the higher spatial frequencies passed by the optics. It is thought that there 
may be a physical wave-guide limit of 1-2 micrometers to receptor diameter, across animals of varying 
acuity (eagle, hawk or human).

Next time
Linear systems and visual neurons

->Multi-resolution, wavelets
->A model of the spatial filtering properties of neurons in the primary visual cortex
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Appendices

Model CSF

csfpg = Plot-−ⅇ-−fx + ⅇ-−
fx
2 , {fx, 0, 8}, Axes → False

Mathematica has built-in symbolic functions: FourierTransform[ ] and 
InverseFourierTransform[ ]

Fourier transform : F (ω) =
1

2 π

-−∞

∞
f (t) ei ω t ⅆt ,

Inverse fourier transform : f (t) =
1

2 π

-−∞

∞
F (ω) e-−i ω t ⅆω

1. The fourier transform of the inverse fourier transform of g[f] is g[f].
g[f]=

FourierTransform[InverseFourierTransform[g[w], w, x], x, w]

$Aborted

2. Convolution theorem: f*g = 
InverseFourierTransform[FourierTransform[f[x],x,w] 
FourierTransform[g[x],x,w],w,x]

InverseFourierTransform[
FourierTransform[g[x], x, w] FourierTransform[h[x], x, w], w, x]

InverseFourierTransform[
FourierTransform[g[x], x, f] FourierTransform[h[x], x, f], f, x]
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Fourier transform of a delta function is constant

FourierTransform[DiracDelta[x], x, f]

1

2 π

What is the Fourier transform of Cos[x]?

FourierTransform[Cos[x], x, f]

π

2
DiracDelta[-−1 + f] +

π

2
DiracDelta[1 + f]

Some functions have the same shape in Fourier domain as in the spatial domain

FourierTransform[Exp[-−(x /∕ σ)^2], x, f]

ⅇ-−
1
4
f2 σ2 σ2

2

Note that as the gaussian gets narrower in space, it gets broader in frequency.
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